### Input
= 9.81 # [m/s^2]
g = 475 # [kg] m
10 Equilibrium Examples
10.1 Equilibrium: Example 1
10.1.1 Problem formulation
The beam is supported at A with rotational joints and a wire at B. The beam has a mass of \(m=475\) kg. There is also a force acting on the hook as shown in the figure.
10.1.2 Do the following:
- Create a free body diagram of the beam shown in the figure, with all applied forces and reaction forces.
- Define the force vectors, select a point to define moments around, and define the moments.
- Calculate the reaction forces at A and the magnitude of the force in the wire connected at B.
- Create a plot:
- draw the origin, the beam, all points of interest with both markers and text.
- plot the force vectors
- Let the connection of the wire vary along the length of the beam between A and B and plot the magnitude of the wire force and reaction forces for all wire positions.
10.1.3 Solution steps
We start by selecting a point for our moments to be calculated around. In this case we select the center of the leftmost end of the beam and call that point O.
Then we create the necessary vectors between different points and how they relate to each other. We also name the points according the the figure below.
We can then define our force vectors and formulate our equations of equilibrium.
10.1.4 Paperwork
10.1.5 Define the force vectors
Constants
We model the placement of B with a symbolic parameter \(r_{OBx}\) and then procede to create the vectors from O to the points of interest according to the figure.
\[ \mathbb{r}_{OB} = \begin{bmatrix} r_{OBx}\\ 0.25\\ 0 \end{bmatrix} \]
The y-coordinate of D can be calculated with
\[ r_{ODy} = 5\tan 25^\circ \]
Code
= sp.symbols("r_OBx", real=True, positive=True)
r_OBx
= sp.Matrix([0.12, 0, 0])
rr_OA = sp.Matrix([2.5, 0, 0])
rr_OG = sp.Matrix([3.5, -0.25, 0])
rr_OC = sp.Matrix([r_OBx, 0.25, 0])
rr_OB
= np.tan(25*np.pi/180)*5
r_ODy = sp.Matrix([0, r_ODy, 0]) rr_OD
The direciton for the wire and thus the wire force, \(\mathbb{F}_B\), can be calculated in the following way: \[ \mathbb{r}_{BD} = \mathbb{r}_{OD} - \mathbb{r}_{OB} \]
and
\[ \mathbb{e}_{BD} = \frac{\mathbb{r}_{BD}}{||\mathbb{r}_{BD}||} \]
Code
# Direction of the wire force
= rr_OD - rr_OB
rr_BD = rr_BD.normalized() ee_BD
When it comes to the forces, we define the force vectors using the definitions from the free body diagram created earlier. We create symbolic variables for the unknown scalar values \(R_{Ax}\), \(R_{Ay}\), and \(F_B\).
### Define the force vectors
= sp.symbols("R_Ax, R_Ay, F_B", real=True)
R_Ax, R_Ay, F_B
= sp.Matrix([R_Ax, R_Ay, 0])
RR_A = m*g*sp.Matrix([0, -1, 0])
WW = sp.Matrix([0, -10000, 0])
FF_C = F_B * ee_BD FF_B
We then establish the equations of equilibrium in the following way:
\[ \Sigma \mathbb{F}=\mathbb{0} : \mathbb{R}_A + \mathbb{W} + \mathbb{F}_C + \mathbb{F}_B = \mathbb{0} \]
\[ \Sigma \mathbb{M}=\mathbb{0}: (\mathbb{r}_{OA} \times \mathbb{R}_A) + (\mathbb{r}_{OG} \times \mathbb{W}) + (\mathbb{r}_{OC} \times \mathbb{F}_C) + (\mathbb{r}_{OB} \times \mathbb{F}_B) = \mathbb{0} \]
Code
### Establish the equations of equlibrium and solve the system
= sp.Eq(RR_A+WW+FF_C+FF_B,sp.Matrix([0,0,0]))
sumF = sp.Eq(rr_OA.cross(RR_A)+rr_OG.cross(WW)+rr_OC.cross(FF_C)+rr_OB.cross(FF_B),sp.Matrix([0,0,0]))
sumM
= sp.solve([sumF,sumM], [R_Ax, R_Ay, F_B]) sol
10.2 Plot the forces, points and bases
Finally, we plot the reaction forces as functions of \(r_{OBx}\).
Show the code
### Plotting the reaction forces
# Create a plot and make settings
'seaborn-v0_8-whitegrid')
plt.style.use(= plt.figure(figsize=(7, 7))
fig = fig.add_subplot()
ax set(xlim=[0, 5], ylim=[-20000, 75000], xlabel='Placement of B [m]', ylabel='Force [N]')
ax."Reaction forces as a function to the wire placement")
ax.set_title(True, which='both', color='k', linestyle='-', alpha=0.1)
plt.grid(
plt.minorticks_on()
# Create the numerical data and functions
= np.linspace(0,5,100)
r_OBx_np = sp.lambdify([r_OBx], sol[F_B], 'numpy')
F_B_f = sp.lambdify([r_OBx], sol[R_Ax], 'numpy')
R_Ax_f = sp.lambdify([r_OBx], sol[R_Ay], 'numpy')
R_Ay_f
# Creating each plot
='-', color='black', label="$F_{B}$")
ax.plot(r_OBx_np, F_B_f(r_OBx_np), linestyle='-', color='blue', label="$R_{Ax}$")
ax.plot(r_OBx_np, R_Ax_f(r_OBx_np), linestyle='-', color='red', label="$R_{Ay}$")
ax.plot(r_OBx_np, R_Ay_f(r_OBx_np), linestyle
ax.legend()
It is interesting to note what happens to the reaction forces when the placement is close to the point A. When the \(\mathbb{F}_B\) vector intercects A the reaction forces are infinite. Also \(\mathbb{F}_B\) is negative when \(\mathbb{F}_B\) intercects between O and A. That is of course not physical behaviour of a wire.
And we can also plot the geometry and force vectors in order to judge if the directions are reasonable given the calculated values for \(r_{OBx}=5\).
Show the code
### Plotting the vectors and points
# Create a plot and make settings
#plt.style.use('seaborn-v0_8-whitegrid')
= plt.figure(figsize=(6, 6))
fig2 = fig2.add_subplot()
ax2 set(xlim=[-1, 6], ylim=[-2, 5], xlabel='X [m]', ylabel='Y [m]')
ax2."Visualization of the beam and forces")
ax2.set_title(True, which='both', color='k', linestyle='-', alpha=0.1)
plt.grid(
plt.minorticks_on()
= rr_OB.subs(r_OBx, 5).evalf()
rr_OB_np = rr_OD.evalf()
rr_OD_np
# Plotting the beam
0,0,5,5,0], [-0.25,0.25,0.25,-0.25,-0.25], linestyle='-', color='black')
ax2.plot([*zip(rr_OB.subs(r_OBx, 5)[:-1],rr_OD[:-1]), linestyle='--', color='black', zorder=0)
ax2.plot(
# Plotting the points and labels
= np.array([0, 0, 0])
rr_O = 0.05
offset
*zip(rr_O), 'ok', ms=5)
ax2.plot(0]-5*offset,rr_O[1]+offset,"O")
ax2.text(rr_O[
*rr_OA[:-1], 'ok', ms=5)
ax2.plot(0]+offset, rr_OA[1]+offset,"A")
ax2.text(rr_OA[
*rr_OB_np[:-1], 'ok', ms=5)
ax2.plot(0]+offset, rr_OB_np[1]+offset,"B")
ax2.text(rr_OB_np[
*rr_OG[:-1], 'ok', ms=5)
ax2.plot(0]+offset, rr_OG[1]+offset,"G")
ax2.text(rr_OG[
*rr_OC[:-1], 'ok', ms=5)
ax2.plot(0]+offset, rr_OC[1]+offset,"C")
ax2.text(rr_OC[
*rr_OD[:-1], 'ok', ms=5)
ax2.plot(0]+offset, rr_OD[1]+offset,"D")
ax2.text(rr_OD[
# Create vectors with numeric values
= np.array(rr_OA).astype(np.float64)
rr_OA_np = np.array(rr_OC).astype(np.float64)
rr_OC_np = np.array(rr_OG).astype(np.float64)
rr_OG_np = np.array(WW).astype(np.float64)
WW_np = np.array(FF_C).astype(np.float64)
FF_C_np = np.array(FF_B.subs({r_OBx:5,F_B:F_B_f(5)})).astype(np.float64)
FF_B_np = np.array(RR_A.subs({R_Ax:R_Ax_f(5), R_Ay:R_Ay_f(5)})).astype(np.float64)
RR_A_np
# Plotting the force vectors
*rr_OC_np[:-1], *FF_C_np[:-1], color='orange', scale=100000, label="$\\mathbb{F}_C$")
ax2.quiver(*rr_OB_np[:-1], *FF_B_np[:-1], color='red', scale=100000, label="$\\mathbb{F}_B$")
ax2.quiver(*rr_OA_np[:-1], *RR_A_np[:-1], color='red', scale=100000, label="$\\mathbb{R}_A$")
ax2.quiver(*rr_OG_np[:-1], *WW_np[:-1], color='blue', scale=50000, label="$\\mathbb{W}$")
ax2.quiver(
ax2.legend()